Neural-bayesian Filtering Based on Monte Carlo Resampling for Visual Robust Tracking

نویسنده

  • XUNGAO ZHONG
چکیده

The visual robust tracking is an acid test for existing methods since the target with large-dynamic-change scenarios. Specifically, this paper presents neural aided Bayesian filtering scheme which is based on Monte Carlo resampling techniques associated with lower particles hypothesis to addresses the computational intensity that is intrinsic to all particle filter (PF) approaches, including those that have been modified to overcome the degeneracy of particles and improve the diversity of particle samples. Performance and tracking quality results for severe-dynamic target tracking experiments demonstrate that the Bayesian filtering deteriorated error caused by constrain the number of particles required which was compensated by a RBF neural network, with high accuracy and intensive tracking performance for unconstrained abrupt motion only require lower particles compare with SIR Bayesian filtering, meanwhile, the proposed method is also with strong robustness for different number of particles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Severe-Dynamic Tracking Problems Based on Lower Particles Resampling

For a target as it with large-dynamic-change which is still challenging for existing methods to perform robust tracking; the sampling-based Bayesian filtering often suffer from computational complexity associated with large number of particle demanded and weighing multiple hypotheses. Specifically, this work proposes a neural auxiliary Bayesian filtering scheme based on Monte Carlo resampling t...

متن کامل

Population Based Particle Filtering

This paper proposes a novel particle filtering strategy by combining population Monte Carlo Markov chain methods with sequential Monte Carlo chain particle which we call evolving population Monte Carlo Markov Chain (EP MCMC) filtering. Iterative convergence on groups of particles (populations) is obtained using a specified kernel moving particles toward more likely regions. The proposed techniq...

متن کامل

A Nonparametric Ensemble Transform Method for Bayesian Inference

It is advisable to refer to the publisher's version if you intend to cite from the work. All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement. Abstract. Many applications, such as intermittent ...

متن کامل

A Reliability Approach on Redesigning the Warehouses in Supply Chain with Uncertain Parameters via Integrated Monte Carlo Simulation and Tuned Artificial Neural Network

In this paper, a reliability approach on reconfiguration decisions in a supply chain network is studied based on coupling the simulation concepts and artificial neural network. In other words, due to the limited budget for warehouse relocation in a supply chain, the failure probability is assessed for determining the robust decision for future supply chain configuration. Traditional solving ...

متن کامل

Hybrid Monte Carlo Filtering: Edge-Based People Tracking

Statistical inefficiency often limits the effectiveness of particle filters for high-dimensional Bayesian tracking problems. To improve sampling efficiency on continuous domains, we propose the use of a particle filter with hybrid Monte Carlo (HMC), an MCMC method that follows posterior gradients toward high probability states, while ensuring a properly weighted approximation to the posterior. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013